

Strandiii

Automating Solid Tumor Characterization from a Liquid Biopsy (LB)

David Williamson¹, Parmod Kumar Garg¹, Rukesh Asokan¹, Chinta Sidharthan¹, Priyanshu Agarwal¹, Kevin Day², Filipp Lagun², and Eric Thompson²

- ¹Strand Life Sciences, Bengaluru, India
- ² Circulogene, Pensacola, Florida, United States

Introduction

The demand for precise, minimally invasive cancer diagnostics is driving rapid adoption of liquid biopsy (LB)-based assays for solid tumors. These assays offer critical insights for early detection, treatment selection, and disease monitoring through comprehensive genomic profiling conducted from a single blood draw. However, realizing this potential requires integrating advanced sequencing platforms with robust, scalable bioinformatics frameworks to ensure accuracy, reproducibility, and clinical readiness.

Objective

The aim of this project was to automate the bioinformatics workflow and validate the analytical sensitivity and specificity of a combined DNA/RNA-based LB assay for detecting a broad spectrum of somatic alterations relevant to solid tumors, including SNVs, INDELs, CNVs, RNA gene fusions, and quantification of tumor mutation burden (TMB) and microsatellite instability (MSI), with added focus on scalability.

Challenges

Develop bioinformatics workflows and coordinate assay development for successful product launch

Create VAF summarization framework for positive controls (DNA mutations, RNA fusions, MSI, TMB) at known titrations

Validate assay sensitivity/specificity and align results with prior sequencing platforms, and integrate bioinformatics across primary-secondary-tertiary analysis

Build API-driven automation to replace manual scripts and streamline cross-system data

Implement data/sample management system for live batch and sample tracking through the pipeline

Methods

We developed a bioinformatics workflow consisting of the following steps:

1) Sequencing performed on a benchtop short-read sequencing system, with FASTQ files as output

- 2) Alignment, variant detection, TMB, and MSI performed using a commercially available secondary analysis pipeline
- 3) Clinical reports generated as PDFs via a secure, cloud-based variant interpretation platform
- 4) Flowcell and sample QC were assessed via scripts and reported using a cloud-hosted analytics dashboard.

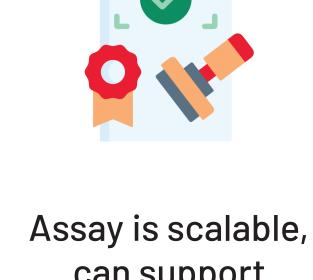
5) Assay sensitivity was assessed using titration data and positive controls to confirm detection of

low-frequency allele variants (≥5%). Computational pipelines for artifact detection and removal were

reliability.

6) An automated, API-driven data integration framework, along with a real-time data dashboard to facilitate sample tracking, was implemented to streamline data transfer across systems and

replace manual processes, improving consistency


also developed to improve bioinformatics QC and

and reducing processing time. 7) All assay components were documented to support CLIA and CAP-compliant validation. The resulting assay is equipped to support future scalability and inclusion of patient cohort analytics,

and is ready for regulatory review and approval.

Assay sensitivity assessment using titration data and

can support patient cohort analytics, and is ready for regulatory review and approval

Step 7

ACIRCULOGENE

Achievements

Contact

Senior Director

David Williamson

Bioinformatics Solutions

Complete implementation in just 3 months

- The effective use of lambda functions by the Strand team reduced overall costs by by 50%
- Processed close to 17,000 samples, with over 14,000 samples processed for tertiary analysis
- Strand's API-driven data integration framework substantially reduced manual workload and time.

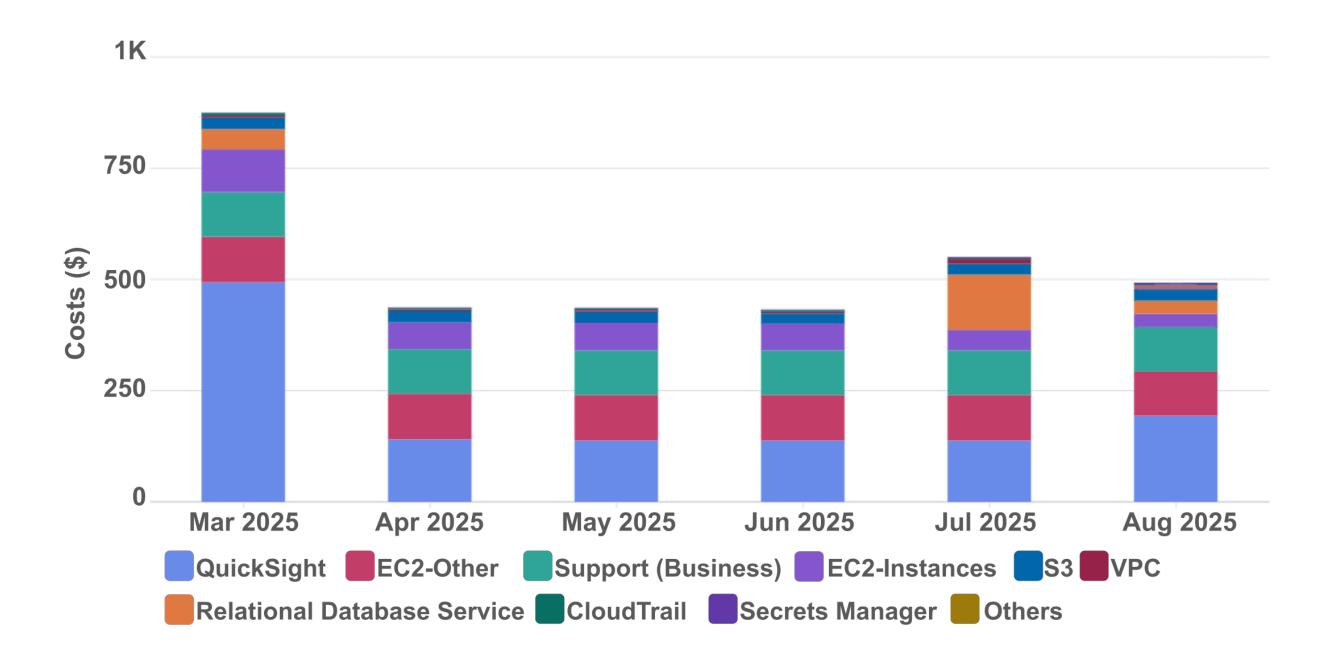
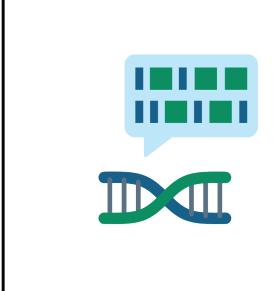
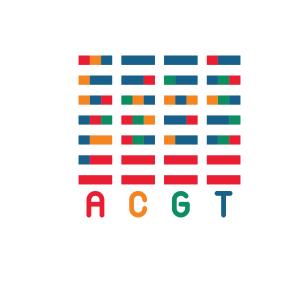



Figure 01: The incorporation of various AWS into the bioinformatics workflow resulted in substantial reductions in the cost of the LB assay.


Results and Conclusions

The assay reached clinical application readiness, supported by a scalable data infrastructure capable of incorporating patient cohort analytics. Moreover, the study demonstrated the feasibility of developing a scientifically rigorous and clinically efficient liquid biopsy assay for solid tumors on a new sequencing platform. It further underscored the importance of coupling technical assay development with robust computational frameworks to enable high-throughput precision oncology diagnostics. These findings also highlight the potential for extending this approach to additional cancer types and for supporting real-time genomic monitoring in clinical care.

Sequencing on benchtop short-read sequencing system, with FASTQ output files

Step 1

Variant detection, TMB and MSI quantification through secondary analysis pipeline

Step 2

Clinical report generation using cloud-based interpretation platform

Step 3

dashboard

Step 4

Assessment and reporting of flowcell and sample QC through positive controls cloud-hosted analytics

Step 5

API-driven data

integration framework along with a real-time data dashboard to facilitate sample tracking

Step 6